
POJ Founder Monthly Contest – 2008.06.29
Solution Sketches

POJ Administrative Staff

July , 

Contents

A Professor Ben 

B Sheryl’s Circuit I 

C Sheryl’s Circuit II 

D Distribution of Toys 

E Bridge Across Islands 

F Reset Sequence 

G Maclaurin Series of Reciprocals 

H MinimumWeighted Perfect Fractional b-Matching 





Problem A Professor Ben

Let the prime factorization ofN be

N =
m∏
i=1
pkii , (A.)

where p1, p2, . . . , pm are distinct prime numbers. Denote byL(n) the number of factors
of any number n. For any factor n ofN whose prime factorization is

n =
m∏
i=1
plii , (A.)

we have

L(n) =
m∏
i=1

(li + 1). (A.)

Summing the cube of the right-hand side of Equation A. over all possible values of
l1, l2, . . . , lm, we have

∑
l1,l2,...,lm

[
m∏
i=1

(li + 1)

]3

=
m∏
i=1

ki∑
li=1

(li + 1)3

=
m∏
i=1

[
(ki + 1)(ki + 2)

2

]2

.

(A.)

Problem B Sheryl’s Circuit I

If “” does not appear in the desired signal, the answer is trivially zero; otherwise, the
optimal strategy must be to toggle the least number of bits to achieve the first “” and flip
one bit upon each change in the output.

We use a dynamic programming approach to determine the least number of bits to
toggle so that the output is “”. Label the gates in a top-down order similar to that of
numbering elements of a binary heap in array representation. e topmost gate is gate
0. For any gate i, its two input-feeding gates, if they exist, are labelled 2i+ 1 and 2i+ 2,
respectively. Denote byOi the least number of “” bits needed to make gate i output “”.
It follows from the definitions of OR and AND gates that

Oi =

{
1 gate i is an OR gate,
2 gate i is an AND gate,

(B.)

if gate i is in the bottom level, and

Oi =

{
min{O2i+1, O2i+2} gate i is an OR gate,
O2i+1 +O2i+2 gate i is an AND gate,

(B.)

otherwise.





Problem C Sheryl’s Circuit II

We do not have to care about the number of falling edges for it must be exactly one less
than that of rising edges. We use a dynamic programming approach that works bottom
up as we did with Problem B.

Denote by Zi,Oi and Ei the numbers of “” bits, “” bits and rising edges in gate i’s
output over a complete cycle. Here a cycle is defined as the period over which the raw
input bits directly or indirectly fed to a gate steps from all “”s to all “”s and then jump
back to all “”s. For any gate i in the bottom level, the values of ⟨Zi, Oi, Ei⟩ is obvious:

ZiOi
Ei

 =



1
3
1

 gate i is an OR gate,

3
1
1

 gate i is an AND gate.

(C.)

For any other gate i, the values of Zi andOi remains easy to determine, but the formula
for Ei is a little bit tricky. Let’s first consider an OR gate i. Observe that gate i effectively
functions as a transfer gate, assuming gate 2i + 2’s output as its own, when gate 2i + 1
outputs “”. During those periods when gate 2i+1’s output stays at “”, all rising edges in
gate 2i+ 2’s output are transferred to gate i’s output. Furthermore, in no other situation
can rising edges appear in gate i’s output. Consequently, we derive that for any OR gate i
not at the bottom level,

Ei = Z2i+1E2i+2. (C.)

Similarly, we can derive that for any AND gate i not at the bottom level,

Ei = O2i+1E2i+2. (C.)

Now the formulæ for any gate i not at the bottom level are complete:

ZiOi
Ei

 =



 Z2i+1Z2i+2

O2i+1O2i+2 +O2i+1Z2i+2 + Z2i+1O2i+2

Z2i+1E2i+2

 gate i is an OR gate,

Z2i+1Z2i+2 +O2i+1Z2i+2 + Z2i+1O2i+2

O2i+1O2i+2

O2i+1E2i+2

 gate i is an AND gate.

(C.)

Problem D Distribution of Toys

Given a set of the numbers {1, 2, . . . , n}, we desire to count all such partitions into m
possibly empty subsets that the cardinality of every subset in them is at least k. We again
use a dynamic programming approach.





Assume that k ≥ 1. Denote by Tn,m the number of valid partitions of {1, 2, . . . , n}
into m subsets. We classify these partitions by whether the removal of n renders them
invalid. e partitions invalidated by removing nmust have n in a subset of cardinality
exactly k. Hence, their number is

(
n−1
k−1
)
Tn−k,m−1. e remaining partitions, which

retains validity regardless of the removal of n, amounts to mTn−1,m. Adding up both
parts and complemented with boundary conditions, the complete recurrence relation is:

Tn,m =


1 n = 0 andm = 0,
0 n < mk,(
n−1
k−1
)
Tn−k,m−1 +mTn−1,m otherwise.

(D.)

e cases where k = 0 have to be specially dealt with. In these cases, the partitions
can be arbitrary as long as they contain exactlym sets, including one or more empty sets.
eir number is given by

∑m
i=0
{
n
i

}
, where

{
n
i

}
denotes a Stirling number of the second

kind.

Problem E Bridge Across Islands

e technique of rotating calipers is particularly suitable for computing the distance be-
tween two non-overlapping convex polygons.

Given two convex polygons P and Q as shown in Figure E., we start by placing
two horizontal lines touching the topmost vertex of P and the bottommost vertex ofQ,
respectively, as shown in Figure E.. Next, we rotate the two lines in the counterclockwise
direction, ensuring that they always touch the borders of the polygons. We claim that
there exists some instance when the two lines touch two points p and q on the borders of
P andQ such that the distance between them is the distance betweenP andQ, as shown
in Figure E..

P Q

Figure E.: Convex polygons P andQ

Problem F Reset Sequence

We perform breadth-first search over subsets of states of the given chip’s control logic to
find the shortest reset sequence. We define a directed graph as described below for the
search procedure to proceed on.





P Q

Figure E.: Initial positions of two rotating lines

P Qp q

Figure E.: Various positions of the rotating lines

Let the set of states beN . Denote by δc(x) the state the chip transits towhen it receives
command c in state x. We define a directed graphG = (2N , A), where 2N is the power
set of N . For each command c and each subset X = {x1, x2, . . . , xk} of N , we create
an arc labelled with c in G which goes from X to {δc(x) : x ∈ X}. Now we can use
breadth-first search to identify the shortest path fromN to {0} inG. e concatenation
of labels on the path is the shortest reset sequence.

Problem G Maclaurin Series of Reciprocals

Given a power series

f(x) = a0 + a1x+ a2x
2 + · · ·+ an−1x

n−1 +O(xn), (G.)

we want to determine its reciprocal also written as a power series.
Let

g(x) = b0 + b1x+ a2x
2 + · · ·+ bn−1x

n−1 +O(xn) (G.)

be the reciprocal of f(x), i.e.,
f(x)g(x) = 1. (G.)

We expand the product f(x)g(x) and collect the coefficients by terms, which gives

f(x)g(x) =

[
n−1∑
k=0

akx
k +O(xn)

][
n−1∑
k=0

bkx
k +O(xn)

]

=
n−1∑
k=0

(
k∑
i=0
aibk−i

)
xk +O(xn).

(G.)





Comparing the right-hand sides of Equations G. and G., we have the following linear
system 

a0
a1 a0
...

...
. . .

an−1 an−2 · · · a0



b0
b1
...
bn−1

 =


1
0
...
0

 , (G.)

which we can solve for b0, b1, . . . , bn−1 and thus g(x).

Problem H Minimum Weighted Perfect Fractional b-
Matching

We reduce the minimum weighted perfect fractional b-matching problem to the mini-
mum cost flow problem. We illustrate the reduction using the sample test case.

Figure H. shows graph G = (V,E) given by the sample test case. Every edge, as
depicted in the general form in Figure H., is interpreted as connecting two vertices i
and j with capacity u and weight c. e label bi is the balance of vertex i.

1 2

3

2 2

4

6, 6

2, 210
, 4

6,
4

Figure H.: GraphG in the sample test case

i j

bi bj

u, c

Figure H.: Labels around an edge

We define a flow network G′ = (N,A) as follows. For each vertex i in G, we create
two corresponding vertices i′ with supply bi and i′′ with demand bi inG′. For each edge e
connecting vertices i and j with capacity u and weight c inG, we create two arcs running
from vertices i′ to j′′ and from i′′ to j′, respectively, and both with capacity u and cost c.
e resulting flow networkG′′ is depicted in Figure H..

Let x∗ be an optimal solution to the minimum cost flow problem on G′, and x∗i′j′′
denote the flow from node i′ to node j′′ in x∗. Observe that x∗ provides a lower bound
on the minimumweight perfect b-matching x on graphG. We define another flow x′ on
G′ where for any pair of nodes ⟨i′, j′′⟩,

x′i′j′′ =
x∗i′j′′ + x∗j′i′′

2
. (H.)





1′ 2′ 3′

1′′ 2′′ 3′′

2 2 4

2 2 4

6, 6

6, 6
2, 2

2, 2

10, 4

10, 4 6, 4

6, 4

Figure H.: Flow networkG′ corresponding to graphG

We can prove that x′ is also an optimal flow. Consequently, if for each edge connecting
vertices i and j inG, we let

xij =
x∗i′j′′ + x∗j′i′′

2
, (H.)

the resulting solution x will be optimal.




