
P
E

K
I

N

G
U N I V E
R

S
I

T
Y

1 8 9 8

2008 Peking University
Campus Programming Contest

Problem Set Solution Sketch

B. FULL STEINER TOPOLOGIES Page 1 of 5

Problem A. Escort of Dr. Who How

An evolving graph is a dynamic directed graph whose topology changes over time. A journey
is the counterpart in an evolving graph of a path in a directed graph. It is defined as a sequence
of edge-time pairs 〈(e1, τ1), (e2, τ2), . . . , (el, τl)〉 where for each 1 ≤ i ≤ l, τi is the traversal
time of edge ei , and along which one can travel from the starting vertex of e1 to the ending
vertex of el in agreement with the timing constraints of every edge.

A fastest journey J = 〈(a1, τ1), (a2, τ2), . . . , (al, τl)〉 from s to t is a journey that minimizes
τl + cl − τ1. An obversation that is crucial to solving the problem is that J can be “slided” over
time subject to the timing contraints of its constituent edges so that it remains fastest. That is to
say, if J is a fastest journey, then the journey J+ε = 〈(a1, τ1+ε), (a2, τ2+ε), . . . , (al, τl+ε)〉
where ε is some real number is also a fastest journey as long as bi ≤ τi + ε < τi + ci + ε ≤ ei
for each 1 ≤ i ≤ l.

Deriving from the above observation, we can impose an additional constraint on a fastest
journey J that τi = bi for some 1 ≤ i ≤ l without affecting the optimality of J .

We resolve the trouble of lacking the a priori knownledge of which edge in J satisfies the
aforementioned constraint by enumerating each edge. Let ai be that edge. J must arrive at xi
no later than time bi and departure from xi no earlier than time ei . In order that τl + cl − τ1
is minimized, J must be the concatenation of a journey from s to xi which departures from s
as late as possible and another one from xi to t which arrives at t as early as possible. We can
identify such two journeys using a variant of Dijkstra’s algorithm for the single-source shortest
paths problem.

Problem B. Full Steiner Topologies

First we derive a closed-form formula to compute Tn , the number of different full Steiner
topologies, for any n. Consider the gadget shown in Figure 1. Let T be full Steiner topology
with n − 1 leaves. To add a new leaf w to T , we can pick an arbitrary edge e connecting two
vertices u and v, create a new Steiner vertex s in the middle, and connect w to s. It is obvious
that there is a one-to-one correspondence between each pair (T, e) and the resulting full Steiner
topology. From this we have following recurrence relation:

Tn =

{
1 n = 3,
(2n − 5)Tn−1 n > 3.

The above recurrence relation can be solved in closed-form:

Tn = (2n − 5)!! =
(2n − 5)!

2n−3(n − 3)!
.

u v

w

s

Figure 1: A gadget for adding a leaf to an existing full Steiner topology

C. ILLUMINATED PLANET Page 2 of 5

We evaluate Tn via its natural logarithm

ln Tn = ln(2n − 5)!− ln(n − 3)!− (n − 3) ln 2.

Stirling’s approximation states that

n! ≈
√

2πn
(n

e

)n
.

More precisely,

n! =
√

2πn
(n

e

)n
eλn

where 1
12n+1 < λn <

1
12n . Taking the natural logarithm of both sides, we have

ln n! =
(

n +
1
2

)
ln n − n +

ln 2π
2
+ λn .

We use λ̂n =
1

12n to approximate λn , then our approximation of ln n! is subject to an error
bounded by 1

12n(12n+1) . Subsequently, our approximation of ln Tn is subject to an error bounded
by 1

12(n−3)(12n−35) , which is less than ln 1
0.9995 ≈ 5.001·10−4 for n ≥ 7, and thus is a sufficiently

accurate approximation. For small values of n, we can hard-code the values of Tn to avoid any
trouble with precision.

Problem C. Illuminated Planet

The solution is best explained by Figure 2. The plane passing through the space probe and the
centers of the planet and the star intersects the surfaces of the planet and the star at two circles.
The two sectors shaded in red and green highlight the arc illuminated by the star and the one
visible from the space probe on the circle representing the planet, respectively. A positive
portion of the illuminated part of the planet’s surface is visible from the space probe if and only
if the two arcs properly overlap each other.

planet
star

space probe

Figure 2: Illustration of the solution to Problem C

E. TOWER OF HANOI Page 3 of 5

Problem D. Polygon Division

This problem is based on the well-known problem of counting divisions of regular polygons
into triangles, the answers to which are the Catalan numbers. We solve this problem using a
dynamic programming approach.

Denote by Tn the number of divisions of a regular n-gon into triangles and/or quadran-
gles for any n ≥ 3. We number the vertices of the n-gon 1 through n in either clockwise or
counterclockwise order. We try to find out a recurrence relation of Tn by considering the side
connecting vertices 1 and n in the divisions. For the sake of notational simplicity, we denote
by ei j a side or diagonal connecting two vertices i and j (1 ≤ i < j ≤ n) and define T2 = 1.

If e1n forms part of a triangle, there is some vertex i (2 ≤ i ≤ n − 1) such that e1i and ein
divide the n-gon into a i-gon, the triangle formed by vertices 1, i and n, and a (n − i + 1)-gon.
We can then further divide the i-gon and the (n − i + 1)-gon. In this case, there are

n−1∑
i=2

Ti Tn−i+1

different divisions.
If e1n forms part of a quadrangle, there are two vertices i and j (2 ≤ i < j ≤ n − 1) such

that e1i , ei j , e jn divide the n-gon into a i-gon, a (j − i + 1)-gon, a (n − j + 1)-gon and the
quadrangle formed by vertices 1, i , j and n. We can then further divide the three polygons
other than the quadrangle containing e1n . In this case, there are

n−2∑
i=2

n−1∑
j=i+1

Ti T j−i+1Tn− j+1

different divisions.
Adding the numbers of divisions in both cases, we come to the following recurrence rela-

tion:

Tn =

n−1∑
i=2

Ti Tn−i+1 +

n−2∑
i=2

n−1∑
j=i+1

Ti T j−i+1Tn− j+1.

This recurrence relation immediately leads to an O(n3)-time algorithm to compute Ti for all
3 ≤ i ≤ n. We can rewrite it as

Un =

n−1∑
i=2

Ti Tn−i+1

Tn = Un +

n−2∑
i=2

TiUn−i+1

to obtain an O(n2)-time algorithm.

Problem E. Tower of Hanoi

If the order of equisized disks is not required to be preserved, the problem can be simplified a
little. The optimal solution will always transfer all disks of the same size altogether from one

G. PUMPING LEMMA Page 4 of 5

peg to another, reversing their order. Denote by Tn the number of moves needed. We can derive
the following recurrence relation:

Tn =

{
a1 n = 1,
2Tn−1 + an n > 1.

Solving the recurrence relation gives

Tn = 2n−1a1 + 2n−2a2 + · · · + 21an−1 + an .

Observe that all disks of any size other than n are transferred an even number of times and sub-
sequently have the order preserved. And if an = 1, Tn is readily the answer to the unsimplified
problem.

The only difficulty that we may encounter is the case that an > 1. Examined from an
alternative perspective, the optimal solution must first transfer all but the bottom disk to another
disk to the auxiliary peg, then the bottom disk to the target peg, and lastly the other disks to the
target peg. Consequently, all non-bottom disks must be moved an even number of times, which
enables us to ignore the ordering constraint on them. Thus, that solution is identical to the
solution to the instance with n′ = n + 1 and {a′1, a′2, . . . , a′n′} = {a1, a2, . . . , an−1, an − 1, 1},
the number of moves needed by which is given in the previous paragraph.

Problem F. PopKart

Each kart can be represented by a point (v,w) in a Cartesian plane. The points corresponding
to karts of class 1 form a “skyline” when joined using line segments in increasing order of the
v-coordinates. Such a “skyline” can be found as follows.

We sort the points in increasing order first by their v- then by their w-coordinates. The
last point in this order must be rightmost point in the “skyline”. We denote it by (v1

k , w
2
k).

The second rightmost point in the “skyline”, which we denote by (v1
k−1, w

1
k−1), must the last

point in sorted order such that v1
k−1 < v1

k and w1
k−1 > w1

k . Similarly, the third rightmost point
(v1

k−2, w
1
k−2) must be the last point in sorted order such that v1

k−2 < v1
k−1 and w1

k−2 > w1
k−1.

After locating all k points in the “skyline”, we have found the k karts of class 1. We then
remove them from the collection. The “skyline” karts of the remaining ones are those of class
2. We repeat this process until all karts are classified.

To find the immediately next rightmost point in the “skyline” efficiently, we use the segment
tree data structure. Each node in the segment tree covers a range of points in sorted order and
store the minimum and maximum v- and the maximumw-coordinates of the points in the range.
These satellite data help refine the search process in the segment tree. After the desired point
is found, it is removed from the segment tree, satellite data of affected nodes are also modified
accordingly. Segment tree operations takes O(log n) each, which contributes a O(n log n)-time
solution.

Problem G. Pumping Lemma

A string w = xyz satisfying the given requirements exists iff there is a loop or cycle of state
transitions in the state chart which is reachable from the start state s and from which some

J. ZEN PUZZLE GARDEN Page 5 of 5

final state is reachable. To locate such a loop or cycle, we regard the state chart as an edge-
labeled directed graph. We perform a depth-first search starting from s. We try to find an
edge connecting some vertex v which is reachable from s and from which some final state is
reachable to itself or an ancestor w of v in the depth-first search tree. If such an edge edge
cannot be found, w does not exist. Otherwise, there exist either a loop v v or a cycle
v w v and subsequently a walk s v v f where f is some final state. We collect
the labels along s v, v v and v f to form x , y and z, respectively.

Problem H. Subimage Recognition

We enumerate the columns of pixels that are removed from image B, then check whether image
A is a subimg of the image B ′ resulting from the removal of those columns.

Problem I. Typographical Ligatures

We scan the text sequentially, recognize the use of each glyph following the leftmost longest
rule and count them en passant.

Problem J. Zen Puzzle Garden

The basic strategy is depth-first state space search. We build up a solution by finding raking
paths one by one. There are several optimizations which allow the search process to complete
in reasonable time:

1. Existing raking paths may divide the unraked squares into several disjoint connected
blocks. If any of them cannot be raked abiding to the game rules, the current branch of
the search tree can then be pruned. Considering the blocks in increasing order of their
sizes generally increases the chance for early pruning to take place.

2. Some special cases can be handled more efficiently. For example, if some connected
block of squares is unreachable from outside the sand, there is no hope that the game can
be completed.

3. We can avoid repeated exploration of a branch of the search tree by appropriately ordering
the candidate raking paths and using hash tables to store previous results.

